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ABSTRACT: Background: Juvenile-onset
Huntington’s disease (JOHD) is a rare and particularly
devastating form of Huntington’s disease (HD) for
which clinical diagnosis is challenging and robust out-
come measures are lacking. Neurofilament light pro-
tein (NfL) in plasma has emerged as a prognostic
biomarker for adult-onset HD.
Methods: We performed a retrospective analysis of
samples and data collected between 2009 and 2020
from the Kids-HD and Kids-JHD studies. Plasma
samples from children and young adults with JOHD,
premanifest HD (preHD) mutation carriers, and age-
matched controls were used to quantify plasma NfL
concentrations using ultrasensitive immunoassay.
Results: We report elevated plasma NfL concentra-
tions in JOHD and premanifest HD mutation-carrying
children. In pediatric HD mutation carriers who were
within 20 years of their predicted onset and patients
with JOHD, plasma NfL level was associated with
caudate and putamen volumes.
Conclusions: Quantifying plasma NfL concentration
may assist clinical diagnosis and therapeutic trial
design in the pediatric population. © 2022 The
Authors. Movement Disorders published by Wiley

Periodicals LLC on behalf of International Parkinson
Movement Disorder Society.
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Huntington’s disease (HD) is a neurodegenerative
disease caused by a CAG repeat expansion within the
HTT exon 1 that is negatively associated with the age
of symptom onset. Pediatric patients have largely
been excluded from HD research, creating two key
knowledge gaps. First, it is unclear how early HD
disease-modifying therapies could be safely initiated,
with early intervention likely to optimize preventative
outcomes.1 However, because the huntingtin protein
is important for neurodevelopment, it is necessary to
distinguish between neurodevelopment and the onset
of neurodegeneration.2,3 Second, little research has
been done in juvenile-onset HD (JOHD), a rare form
of HD characterized by exceptionally long CAG
repeats and motor manifestation before the age of
21.4,5 Initial manifestations of JOHD often overlap
with normal variability in childhood or adolescence
or with prevalent juvenile disorders such as depres-
sion, anxiety, attention deficit hyperactivity disorder
(ADHD), and Tourette’s syndrome, complicating dif-
ficult decisions about diagnosis and genetic testing of
minors.4 An indicator that could distinguish a neuro-
degenerative process from a neurodevelopmental dis-
order would be a useful screening tool to inform
difficult decisions on genetically testing minors.
Plasma neurofilament light protein (NfL) is an
established biomarker of neurodegeneration and an
emerging biomarker for adult-onset HD (AOHD)
progression.6-9 NfL concentrations have not been
quantified previously in a pediatric HD cohort.
We quantified plasma NfL levels in two unique pedi-

atric patient populations: healthy children with HTT
expansion mutations expected to produce adult-onset
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disease (premanifest Huntington’s disease [preHD]) and
those with JOHD. We compared these to NfL in
healthy control children and young adults to better
understand its use to monitor disease and advance clini-
cal trial efforts in these patient populations.

Patients and Methods
Participants

We performed a retrospective analysis of prospec-
tively collected data from the Kids-HD/JHD observa-
tional studies. Kids-HD recruited children and young
adults with a parent/grandparent with a CAG expan-
sion and healthy controls with no known family history
of HD. For research purposes only, participants were
genotyped in a blinded manner such that neither the
children, their families, the clinicians, nor the patient-
facing researchers were aware of the test results
(Appendix S1).10,11 Those with CAG repeats ≥36 were
labeled Gene-Expanded and those with repeats less
than 36, including all of the healthy control volunteers,
as Gene-Non-Expanded (GNE). The Kids-JHD study

recruited patients with a motor diagnosis of JOHD by
a neurologist before age 21 years and had a genetic
diagnosis confirming HD. Both studies implemented an
accelerated longitudinal design where some participants
had multiple visits at 1- to 2-year intervals, and others
had only one visit.10,11

Plasma NfL concentration was quantified using the
Quanterix NF-Light assay kit on the HD-1 Simoa ana-
lyzer (see Appendix S1). We combined plasma NfL data
from both Kids-HD/JHD with previously published
plasma NfL data from the longitudinal HD-CSF
cohort8,12 (from premanifest and manifest AOHD) to
assess plasma NfL trajectories over the course of HD.

Statistical Analysis
Plasma NfL concentrations were natural-log-

transformed to account for right-skewed distribution.7

We first examined participants from Kids-HD with pre-
manifest AOHD (preHD). PreHD were grouped on
their predicted years to onset (YTO; based on
Langbehn formula13) and compared to GNE. Plasma
NfL concentrations were compared between JOHD and

TABLE 1 Baseline cohort characteristics of Kids-HD and Kids-JHD participants

Controls preHD JOHD P-value

N (total visits) 61 (83) 30 (44) 9 (11) NA

Age, mean � SD 12.75 � 3.71 14.00 � 3.12 16.48 � 6.38 0.019

Males, N (%) 23 (37.7) 10 (33.3) 5 (55.6) 0.483

CAG, mean � SD 20.33 � 4.39 43.90 � 4.47 72.11 � 12.67 <0.0001

BMI, mean � SD 22.14 � 7.48 21.92 � 5.13 21.51 � 6.22 0.963

Tanner stage, N (%) 0.337

0 15 (22.2) 4 (13.3) 2 (22.2)

1 4 (6.6) 0 (0) 0 (0)

2 4 (6.6) 1 (3.3) 0 (0)

3 12 (19.7) 5 (16.7) 0 (0)

4 16 (26.2) 15 (50.0) 4 (44.4)

5 10 (16.4) 5 (16.7) 3 (33.3)

Parental SES, N (%) 0.062

1 0 (0) 0 (0) 0 (0)

2 36 (59.0) 14 (46.7) 2 (22.2)

3 22 (36.1) 14 (46.7) 4 (44.4)

4 2 (3.3) 2 (6.7) 2 (22.2)

5 1 (1.6) 0 (0) 1 (11.1)

Plasma NfL (pg/mL), mean � SD 5.46 � 4.78 5.67 � 3.32 56.01 � 58.02 <0.000

P-values for continuous variables were generated from one-way analyses of variance. P-values for categorical variables were generated from Pearson’s χ2 analyses. Values are pres-
ented as mean � SD unless otherwise stated. Tanner stage assesses puberty stage, and parental SES was quantified using the Hollingshead Scale.
Abbreviations: HD, Huntington’s disease; JOHD, juvenile-onset Huntington’s disease; NA, not available; SD, standard deviation; preHD, premanifest Huntington’s disease;
JOHD, juvenile-onset Huntington’s disease; CAG, cytosine-adenine-guanine; BMI, body mass index; SES, socioeconomic status; NfL, neurofilament light protein.
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GNE. For groupwise analyses, we constructed linear
mixed effects regression (LMER) models controlling for
age and included random effects per participant and
family to account for siblings. Within-subject and resid-
ual variances were estimated separately for groups via
iteratively re-weighted least squares (SAS v9.4). We cre-
ated a receiver operating curve to determine the sensi-
tivity and specificity of plasma NfL levels to distinguish
between JOHD and GNE.
The relationship between plasma NfL measurements

and striatal volume (see Appendix S1) among select
preHD participants and JOHD was evaluated. Brain
volumes were presented as percentage of intracranial
volume (ICV), and scanner was included as a covariate
in LMER models. Plasma NfL concentration versus
brain models were fit using the package lmerTest (ver-
sion 3.1-2) within R (version 3.6.0).
We pooled plasma NfL measurement data from the

Kids-HD/JHD with adult participants from HD-
CSF6,8,12 to evaluate the nonlinear plasma NfL dynamics
by disease burden score (DBS = age � [CAG-35.5])14

using LMER models. A two degrees-of-freedom test was
performed for the joint significance of the two-spline
transformation of DBS.
We accounted for multiple comparisons using the false

discovery rate (FDR) correction when preHD groups
were compared to controls. An FDR threshold of < 0.05
and a P < 0.05 were considered statistically significant.

Study Approval and Informed Consent
The Kids-HD and Kids-JHD protocols were

approved by the Institutional Review Board at the Uni-
versity of Iowa. The parents or legal guardians of par-
ticipants who were aged below 18 years or who were
above 18 with significant cognitive deficits provided
written informed consent, and the children provided
assent. Participants who were aged 18 years or above
provided written consent. Ethical approval for HD-CSF
was provided by the London Camberwell St Giles
Research Ethics Committee. All participants provided
informed written consent before enrollment.

Data Sharing
The Kids-HD and Kids-JHD data sets, including

deidentified participant data, processed brain volumes,
and clinical assessments may be made available on rea-
sonable request.

Results

The characteristics of the cohort are provided in
Table 1. The characteristics by estimated years to
motor onset (YTO) groupings are provided in
Table S1. We assessed potential confounding demo-
graphics on plasma NfL levels in healthy controls,

finding little evidence for the impact of healthy develop-
ment on plasma NfL concentrations (Fig. S1).
The mean plasma NfL concentration in controls was

4.09 pg/mL (95% confidence interval [95% CI] 2.89–
5.28), which did not differ significantly from preHD
40 to 60 YTO (mean difference [MD] = 0.29 pg/mL
[�1.05–1.63]), 30 to 40 YTO (MD = �0.07 pg/mL
[�1.43–1.29]), or 20 to 30 YTO (MD = �0.39 pg/mL
[�1.68–0.89]). However, the preHD 15 to 20 YTO
and <15 YTO groups both had higher plasma NfL con-
centrations than controls (MD = 2.39 pg/mL [1.10–
3.69], FDR < 0.0001 and MD = 5.00 [3.13–6.87],
FDR = 0.012, respectively; Fig. 1A).
JOHD patients had a mean plasma NfL concentration

of 30.27 pg/mL (95% CI [28.46–32.07]) that was signif-
icantly elevated relative to controls (MD = 26.00 pg/mL,
95% CI [24.19–27.81], FDR < 0.0001; Fig. 1A). The
mean plasma NfL concentration of the JOHD group
was also significantly elevated relative to all the preHD
groups, most notably the participants who were 15 to
20 YTO (MD = 23.61 pg/mL, 95% CI [21.80–25.42],
FDR < 0.0001; Fig. 1A) and <15 YTO (MD = 21.00 pg/
mL, 95% CI [19.19–22.81], FDR < 0.0001; Fig. 1A).
A cutoff of 9.64 pg/mL accurately classified 91%

(95% CI [73%–100%]) of JOHD patients and 96%
(95% CI [92%–100%]) of controls (AUC 0.96;
Fig. 1B). In a post hoc analysis, we determined that a
cutoff of 19.09 pg/mL accurately classified 82% (95%
CI [60%–100%]) of JOHD patients and 100% (95%
CI [100%–100%]) of preHD participants who were
within 20 YTO (AUC: 0.90; Fig. 1C).
Among participants with elevated NfL concentrations

(preHD within 20 YTO and JOHD groups combined),
plasma NfL levels were significantly associated with cau-
date volume (β = �0.12% ICV per log pg/mL, 95% CI
[�0.18 to �0.05], FDR = 0.004; Fig. 1D) and putamen
volume (β = �0.14% ICV per log pg/mL 95% CI [�0.21
to �0.07], FDR = 0.004; Fig. 1E). However, the relation-
ships seemed to disappear at NfL concentrations >50 pg/
mL. Restricting the models to concentrations <50 pg/mL,
the reestimated slopes were �0.18% ICV per log pg/mL
for caudate (95% CI [�0.27 to �0.09], FDR = 0.004;
Fig. 1D) and �0.21% ICV per log pg/mL for putamen
(95% CI [�0.31 to �0.12], q = 0.004; Fig. 1E).
There was a significant, nonlinear relationship

between plasma NfL level and DBS in participants from
the Kids-HD, Kids-JHD, and HD-CSF (an AOHD
cohort) cohorts (F(2, 107.85) = 33.21, P < 0.001;
Fig. 1F), with an increase in plasma NfL concentration
beginning to emerge around DBS 200.

Discussion

We report two novel findings from unique pediatric
HD populations. First, plasma NfL concentration was
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FIG. 1. Plasma NfL is elevated in JOHD and children within 20 YTO of AOHD. Plasma NfL was elevated in (A) preHD children within 20 years of their predicted
onset and (B) the JOHD group. Plasma NfL identifies (C) patients with JOHD. Plasma NfL in patients with JOHD and preHD participants who are close to onset
is related to (D) caudate and (E) putamen volume. Plasma NfL is significantly related to disease burden in (F) children and adults with HD. AUC, area under the
curve; HD, Huntington’s disease; ICV, intracranial volume; JOHD, juvenile-onset Huntington’s disease; LMER, linear mixed effects regression model; MD, mean
difference between groups; pg/mL, picograms per milliliter; NfL, neurofilament light protein; preHD, premotor-manifest Huntington’s disease; q, false discovery
rate threshold; YTO, years to predicted onset of Huntington’s disease.
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significantly increased in children by approximately
20 years before the predicted motor onset of AOHD.
Second, patients with JOHD had significantly higher
plasma NfL levels than healthy controls, by a factor of
about sevenfold. In those with elevated NfL concentra-
tions up to 50 pg/mL, plasma NfL levels were signifi-
cantly associated with decreasing volumes of the
caudate and putamen. The relationship between striatal
volume and plasma NfL concentration seemed to
diminish in participants with higher NfL concentra-
tions. Plasma NfL levels increased significantly with dis-
ease burden.
These preHD AOHD findings are consistent with the

HD Young Adult study (HD-YAS), where adult sub-
jects about 20 years from onset had increased plasma
NfL concentrations.15 However, this had not been pre-
viously shown in children, where normal maturational
processes result in decreasing striatal volume beginning
near puberty, making it difficult to distinguish when
normal development ends and early degeneration
begins.10 Plasma NfL levels could, however, help distin-
guish between neurodevelopmental and neurodegenera-
tive processes. NfL concentrations may, in the future,
help guide decisions around the timing of disease-
modifying interventions.
The substantial increases in plasma NfL levels

observed in JOHD participants could also assist clini-
cians in providing a timely diagnosis to patients with
JOHD. Currently, genetic testing of a minor is per-
formed only when a provider is confident that the clini-
cal symptoms are consistent with JOHD, which could
take years. Our results demonstrate that plasma NfL
concentrations can classify patients with JOHD from
non-HD controls and asymptomatic preHD children
with a fairly high degree of accuracy. Therefore, plasma
NfL levels could provide additional information for
practitioners struggling to decide if confirmatory genetic
testing is warranted in a minor when a clinical diagno-
sis of JOHD is not clear. Further, plasma NfL concen-
tration could be used as a much-needed outcome
measure to facilitate therapeutics trials in JOHD
populations.
There are important limitations to this work. The

prevalence of disorders such as Tourette’s syndrome
and ADHD was low in the control group. Therefore, it
is possible that a higher prevalance of these common
juvenile disorders would make it more difficult to dis-
tinguish JOHD participants from controls. In addition,
it is unknown if plasma NfL concentrations are ele-
vated in other neurologic disorders that may impact
children, such as dystonia or parkinsonism. Conse-
quently, elevated NfL concentrations may lack the spec-
ificity required to distinguish between JOHD and other
neurological conditions.
Collectively, these findings suggest two potential

applications of plasma NfL: (1) determining the timing

of intervention for young preHD subjects and (2) a
marker for disease diagnosis and monitoring progres-
sion in JOHD.
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